1. Aksoy, A., & Öztürk, N. (2011). Supplier selection and performance evaluation in just-in-time production environments. Expert Systems with Applications, 38(5), 6351-6359. [
DOI:10.1016/j.eswa.2010.11.104]
2. Amin, S. H., & Razmi, J. (2009). An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation. Expert Systems with Applications, 36(4), 8639-8648. [
DOI:10.1016/j.eswa.2008.10.012]
3. Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53. [
DOI:10.1287/opre.1030.0065]
4. Cheng, M.-Y., Tsai, H.-C., & Sudjono, E. (2011). Evaluating subcontractor performance using evolutionary fuzzy hybrid neural network. International Journal of Project Management, 29(3), 349-356. [
DOI:10.1016/j.ijproman.2010.03.005]
5. Clark, D., & Takahashi, Y. (2011). Quake disrupts key supply chains. The Wall Street Journal Asia, March, 12.
6. Davis, T. (1993). Effective Supply Chain Management. Sloan Management Review, 34, 35-46.
7. Du, F., & Evans, G. W. (2008). A bi-objective reverse logistics network analysis for post-sale service. Computers and Operations Research, 35(8), 2617-2634. [
DOI:10.1016/j.cor.2006.12.020]
8. El-Sayed, M., Afia, N., & El-Kharbotly, a. (2010). A stochastic model for forward-reverse logistics network design under risk. Computers and Industrial Engineering, 58(3), 423-431. [
DOI:10.1016/j.cie.2008.09.040]
9. Francas, D., & Minner, S. (2009). Manufacturing network configuration in supply chains with product recovery. Omega, 37(4), 757-769. http://doi.org/10.1016/j.omega.2008.07.007 [
DOI:10.1016/j.omega.2008.07.007]
10. Gencer, C., & Gürpinar, D. (2007). Analytic network process in supplier selection: A case study in an electronic firm. Applied Mathematical Modelling, 31(11), 2475-2486. [
DOI:10.1016/j.apm.2006.10.002]
11. Gunasekaran, A., Sarkis, J., Talluri, S., & Gunasekaran, A. (2007). A strategic model for agile virtual enterprise partner selection. International Journal of Operations & Production Management, 27(11), 1213-1234. [
DOI:10.1108/01443570710830601]
12. Hadi-Vencheh, A., & Niazi-Motlagh, M. (2011). An improved voting analytic hierarchy process-data envelopment analysis methodology for suppliers selection. International Journal of Computer Integrated Manufacturing, 24(3), 189-197. [
DOI:10.1080/0951192X.2011.552528]
13. Håkansson, H., & Snehota, I. (2006). No business is an island: The network concept of business strategy. Scandinavian Journal of Management, 22(3), 256-270. [
DOI:10.1016/j.scaman.2006.10.005]
14. Hanafizadeh, P., & Sherkat, M. H. (2009). Designing fuzzy-genetic learner model based on multi-agent systems in supply chain management. Expert Systems with Applications, 36(6), 10120-10134. [
DOI:10.1016/j.eswa.2009.01.008]
15. Hassanzadeh Amin, S., & Zhang, G. (2012). An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach. Expert Systems with Applications, 39, 6782-6791. [
DOI:10.1016/j.eswa.2011.12.056]
16. Heidarzade, A., Mahdavi, I., & Mahdavi-amiri, N. (2016). Supplier selection using a clustering method based on a new distance for interval type-2 fuzzy sets : A case study, 38, 213-231. [
DOI:10.1016/j.asoc.2015.09.029]
17. Hudymáčová, M., Benková, M., Pócsová, J., & Škovránek, T. (2010). Supplier selection based on multi-criterial AHP method. Acta Montanistica Slovaca, 15(3), 249.
18. Inderfurth, K. (2005). Impact of uncertainties on recovery behavior in a remanufacturing environment: a numerical analysis. International Journal of Physical Distribution & Logistics Management, 35(5), 318-336. [
DOI:10.1108/09600030510607328]
19. Kahraman, C., & Kaya, İ. (2010). Supplier selection in agile manufacturing using fuzzy analytic hierarchy process. In Enterprise networks and logistics for agile manufacturing (pp. 155-190). Springer. [
DOI:10.1007/978-1-84996-244-5_8]
20. Kim, K., Song, I., Kim, J., & Jeong, B. (2006). Supply planning model for remanufacturing system in reverse logistics environment. Computers and Industrial Engineering, 51(2), 279-287. [
DOI:10.1016/j.cie.2006.02.008]
21. Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: a critical review. European Journal of Operational Research, 203(2), 283-293. [
DOI:10.1016/j.ejor.2009.06.011]
22. Liao, T. W. (2015). Two interval type 2 fuzzy TOPSIS material selection methods. Materials & Design, 88, 1088-1099. [
DOI:10.1016/j.matdes.2015.09.113]
23. Lieckens, K., & Vandaele, N. (2007). Reverse logistics network design with stochastic lead times. Computers and Operations Research, 34(2), 395-416. [
DOI:10.1016/j.cor.2005.03.006]
24. Liste, O. (2007). A generic stochastic model for supply-and-return network design, 34, 417-442. [
DOI:10.1016/j.cor.2005.03.007]
25. Pati, R. K., Vrat, P., & Kumar, P. (2008). A goal programming model for paper recycling system. Omega, 36(3), 405-417. [
DOI:10.1016/j.omega.2006.04.014]
26. Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2009). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. [
DOI:10.1007/s00170-008-1715-y]
27. Perić, T., Babić, Z., & Veža, I. (2013). Vendor selection and supply quantities determination in a bakery by AHP and fuzzy multi-criteria programming. International Journal of Computer Integrated Manufacturing, 26(9), 816-829. [
DOI:10.1080/0951192X.2013.799778]
28. Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and Operations Research, 37(6), 1100-1112. [
DOI:10.1016/j.cor.2009.09.018]
29. Pishvaee, M. S., Jolai, F., & Razmi, J. (2009). A stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28(4), 107-114. [
DOI:10.1016/j.jmsy.2010.05.001]
30. Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649. [
DOI:10.1016/j.apm.2010.07.013]
31. Qin, Z., & Ji, X. (2010). Logistics network design for product recovery in fuzzy environment. European Journal of Operational Research, 202(2), 479-490. [
DOI:10.1016/j.ejor.2009.05.036]
32. Rezaei, J., & Ortt, R. (2012). A multi-variable approach to supplier segmentation. International Journal of Production Research, 50(16), 4593-4611. [
DOI:10.1080/00207543.2011.615352]
33. Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q. (2007). An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. European Journal of Operational Research, 179(3), 1063-1077. [
DOI:10.1016/j.ejor.2005.05.032]
34. Selim, H., & Ozkarahan, I. (2008). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. [
DOI:10.1007/s00170-006-0842-6]
35. Şen, C. G., Baraçli, H., Şen, S., & Başligil, H. (2009). An integrated decision support system dealing with qualitative and quantitative objectives for enterprise software selection. Expert Systems with Applications, 36(3 PART 1), 5272-5283. [
DOI:10.1016/j.eswa.2008.06.070]
36. Şen, S., Başligil, H., Şen, C. G., & Baracli, H. (2008). A framework for defining both qualitative and quantitative supplier selection criteria considering the buyer-supplier integration strategies. International Journal of Production Research, 46(7), 1825-1845. [
DOI:10.1080/00207540600988055]
37. Sheu, J. B., Chou, Y. H., & Hu, C. C. (2005). An integrated logistics operational model for green-supply chain management. Transportation Research Part E: Logistics and Transportation Review, 41(4), 287-313. [
DOI:10.1016/j.tre.2004.07.001]
38. Shi, J., Zhang, G., & Sha, J. (2011). Optimal production planning for a multi-product closed loop system with uncertain demand and return. Computers and Operations Research, 38(3), 641-650. [
DOI:10.1016/j.cor.2010.08.008]
39. Shi, J., Zhang, G., Sha, J., & Amin, S. H. (2010). Coordinating Production and Recycling Decisions With Stochastic Demand and Return. Journal of Systems Science and Systems Engineering, 19(4), 385-407. [
DOI:10.1007/s11518-010-5147-5]
40. Tam, M. C. Y., & Tummala, V. M. R. (2001). An application of the AHP in vendor selection of a telecommunications system. Omega, 29(2), 171-182. [
DOI:10.1016/S0305-0483(00)00039-6]
41. Vinodh, S., Ramiya, R. A., & Gautham, S. G. (2011). Application of fuzzy analytic network process for supplier selection in a manufacturing organisation. Expert Systems with Applications, 38(1), 272-280. [
DOI:10.1016/j.eswa.2010.06.057]
42. Wood, D. A. (2016). Journal of Natural Gas Science and Engineering Supplier selection for development of petroleum industry facilities , applying multi-criteria decision making techniques including fuzzy and intuitionistic fuzzy TOPSIS with fl exible entropy weighting. Journal of Natural Gas Science and Engineering, 28, 594-612. [
DOI:10.1016/j.jngse.2015.12.021]
43. Wu, C., & Barnes, D. (2010). Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach. International Journal of Production Economics, 125(2), 284-293. [
DOI:10.1016/j.ijpe.2010.02.010]
44. Zhang, G., & Ma, L. (2009). Optimal acquisition policy with quantity discounts and uncertain demands. International Journal of Production Research, 47(9), 2409-2425. [
DOI:10.1080/00207540701678944]