یکی از مسائل بسیار مهم در شروع یک فعالیت اقتصادی، پیش بینی در مطالعات بازار میباشد. روابط موجود در بسیاری از مسائل مدیریتی و تجاری اغلب به صورت پیچیده و غیرخطی بوده و با روشهای معمول قابل پیش بینی نیستند، بنابراین میتوان با فنون و روشهای دقیق تری همچون شبکههای عصبی به پیش بینی با دقت بالا پرداخت. هدف این مقاله نشان دادن برتری شبکههای عصبی در پیش بینی فرآیندهای غیرخطی در مقایسه با روشهای معمول و نیز استفاده از پارامترهای مهم اقتصادی یعنی نرخ تورم و نرخ ارز در بالا بردن دقت پیش بینی است. در این مقاله از دادههای مربوط به میزان تولید بطریهای PET از سال 1379 تا سال 1392 استفاده شده و با بهره گیری از شبکه عصبی مصنوعی و مدلهای غیرخطی، از طریق نرم افزار MATLAB پیش بینی تولید برای سال 1393 انجام پذیرفت و سپس با توجه به شاخصهای MAPE و MSE نتایج به دست آمده از روشهای مزبور با هم مقایسه شدند. یافتههای تحقیق نشان دهنده موفقیت شبکه عصبی با خطای بسیار پایین در پیش بینی نسبت به روشهای سری زمانی و نمایی است.
بازنشر اطلاعات | |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |