logo
Volume 2, Issue 8 (9-2019)                   2019, 2(8): 73-96 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Prioritizing Organizational Projects with Fuzzy Data Envelopment Analysis Approach (Case Study of Educational Research Plans). Journal title 2019; 2 (8) :73-96
URL: http://jde.khu.ac.ir/article-1-110-en.html
Abstract:   (1847 Views)
The right choice of research projects is one of the most important effective ways to increase the productivity of research projects and allocate the resources appropriately. Training and education is one of the most important institutions for educating the students and prosperous people of the country. Due to the limited resources of this organization and, on the other hand, the expansion of scrupulous plans, prioritizing research projects is essential. Data coverage is one of the most important nonparametric tools for evaluating the performance of decision-making units. In this method, we evaluate the performance of the units by calculating the relative efficiency of the units. Also, due to the uncertainty of the data, the values ​​of the indices of research projects, by using the fuzzy data envelopment analysis, we prioritize the research projects. By reviewing the literature and research background, prioritizing research designs based on cost, time, risk, project quality and performance criteria in upgrading the country's macro level, which was categorized in two groups of data and outputs, respectively. The numerical and verbal values ​​of the indicators of the designs have been gathered by agreement with the experts. The results of the research indicate that the project "Reviewing the characteristics of the pay-as-you-go system and evaluating it based on the competency and competency benchmark and model presentation" is among the top priorities and should be considered more than other plans.
Full-Text [PDF 373 kb]   (782 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/05/10 | Accepted: 2019/07/17 | Published: 2019/09/14

References
1. Archer، N. P.، & Ghasemzadeh، F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management، 17(4)، 207-216. [DOI:10.1016/S0263-7863(98)00032-5]
2. Amiri, M., & Golozari, F.(2011). Application of fuzzy multi-attribute decision making in determining the critical path by using time, cost. risk and quality criteria. Manuf Technoal, 393-401. [DOI:10.1007/s00170-010-2928-4]
3. Anderson, P., & Peterson, N.(1993). Aprocedure for ranking efficient units in data envelopment analysis. management science, 1078-1093.
4. Atkinson, R. (1999). project management : cost, time and Quality, two best guesses and a phenomenon, its time to accept other succes criterja. project management, 337-342. [DOI:10.1016/S0263-7863(98)00069-6]
5. banker, R., charnes, A., & cooper, W.(1984). some models for estimating technical and scale inefficies in data envelopment. management science, 1078-1093. [DOI:10.1287/mnsc.30.9.1078]
6. Barros de Oliveira, M., Costa, H., Figueiredo, F. V., & Rocha, A. R. C. (2014). Scaling up a Project Portfolio Selection Technique by using Multiobjective Genetic Optimization. iSys-Revista Brasileira de Sistemas de Informação, 7(4), 60-74.
7. Badiezadeh, T., Farzipoor, R., & Samavati, T. (2017) Assessing sustainability of supply chains by double frontier network DEA: A big data approach, In Computers & Operations Research, 0305-0548. [DOI:10.1016/j.cor.2017.06.003]
8. Bhattacharyya, R., Kumar, P., & Kar, S. (2011). Fuzzy R&D portfolio selection of interdependent projects. Computers & Mathematics with Applications, 62(10), 3857-387. [DOI:10.1016/j.camwa.2011.09.036]
9. Beach, R., Muhlemann, A., Price, D., Paterson, A., & Sharp, J. (2000). A review of manufacturing flexibility. European journal of operational research, 41-57. [DOI:10.1016/S0377-2217(99)00062-4]
10. Charnes, A., Cooper, W., & Rhodes, E.(1978). Measuring the efficiency of decision making units. Europen journal of operational research, 429-444. [DOI:10.1016/0377-2217(78)90138-8]
11. Cooper، R. G.، Edgett، S. J.، & Kleinschmidt، E. J. (1998). Best practices for managing R&D portfolios. Research technology management، 41(4)، 20. [DOI:10.1080/08956308.1998.11671219]
12. Dyer, J., & Sarin, R.(1979). Measurable multi-attribute value functions. Operations Research, 810-822. [DOI:10.1287/opre.27.4.810]
13. Englund, R. L., & Graham, R. J. (1999). From experience: linking projects to strategy. Journal of Product Innovation Management, 16(1), 52-64. [DOI:10.1111/1540-5885.1610052]
14. Farrell, M.(1957).the measurement of productive efficiency. journal of the royal statstical society, 253-290. [DOI:10.2307/2343100]
15. Hsiao, W., Lin, H., & Chang, T.(2007). Fuzzy consensus measure on verbal opinions. Expert systems With Applications. [DOI:10.1016/j.eswa.2007.07.040]
16. Jafarzadeh, M., Tareghian, H. R., Rahbarnia, F., & Ghanbari, R. (2015). Optimal selection of project portfolios using reinvestment strategy within a flexible time horizon. European Journal of Operational Research, 243(2), 658-664. [DOI:10.1016/j.ejor.2014.12.013]
17. Kolahi A,Tahmooreszadeh Sh, Gachkar L, Mardani M (2008). Research priority setting of shaheed Beheshti Medical University Infections Diseaes and Tropical Medicine Research center in 2007. Iran J Clin Infect Dis.
18. Kwon, H.B., Marvel, J.H. and Roh, J.J, (2016) "Three-stage per-formance modeling using DEA-BPNN for better practice benchmarking", Expert Systems With Applica-tions [DOI:10.1016/j.eswa.2016.11.009]
19. Liu, S. S., & Wang, C. J. (2011). Optimizing project selection and scheduling problems with time-dependent resource constraints. Automation in Construction, 20(8), 1110-1119. [DOI:10.1016/j.autcon.2011.04.012]
20. Malekafzali H, Bahreini FS, Alaedini F, Forouzan AS (2007). Health system priorities based on needs assessment and stakeholders participation in I.R.
21. Petrović , M., Bojković1, N., Stamenković, M., & Anić, I., (2018). A Sensitivity Analysis of ELECTRE Based Stepwise Benchmarking for Policy: the Case of EU Digital Agenda, Journal of Sustainable Business and Management Solutions in Emerging Economies. [DOI:10.7595/management.fon.2018.0003]
22. PMBoK, A. (2012). A Guide to the project Management body of knowledge (Fifth Edition). Project Management Institute, Pennsylvania USA.
23. PMI standards, C. (1996). A guide to the project. Project Management.
24. Saati, S& Menarani, A (2005). Reducing weight flexibility in fuzzy DEA. Applied Mathematics and Computation. [DOI:10.1016/j.amc.2003.12.052]
25. Soleimani damaneh , M. Jahanshahloo,G. Abbasbandy , S (2006). Computational and theoretical pitfalls in some current performance measurement techniques and a new approach. Applied Mathematics and Computation. [DOI:10.1016/j.amc.2006.01.085]
26. Tavana، M.، Khalili-Damghani، K.، & Sadi-Nezhad، S. (2013). A fuzzy group data envelopment analysis model for high-technology project selection: A case study at NASA. Computers & Industrial Engineering، 66(1)، 10-23. [DOI:10.1016/j.cie.2013.06.002]
27. Turner, J. R. (2014). The handbook of project-based management (Vol. 92). McGraw-hill.
28. Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio optimization. Journal of Economic Dynamics and Control, 32(1), 235-258. [DOI:10.1016/j.jedc.2007.01.034]
29. Witzel, M. (2002). A short history of efficiency. business strategy review, 38-47. [DOI:10.1111/1467-8616.00232]
30. Xue, Q., Wang, Z., Liu, S., & Zhao, D. (2014). An improved portfolio optimization model for oil and gas investment selection. Petroleum Science, 11(1), 181-188. [DOI:10.1007/s12182-014-0331-8]
31. Zadeh, L. (1965). fuzzy sets. Information and control, 338-353. [DOI:10.1016/S0019-9958(65)90241-X]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.