1. Archer، N. P.، & Ghasemzadeh، F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management، 17(4)، 207-216. [
DOI:10.1016/S0263-7863(98)00032-5]
2. Amiri, M., & Golozari, F.(2011). Application of fuzzy multi-attribute decision making in determining the critical path by using time, cost. risk and quality criteria. Manuf Technoal, 393-401. [
DOI:10.1007/s00170-010-2928-4]
3. Anderson, P., & Peterson, N.(1993). Aprocedure for ranking efficient units in data envelopment analysis. management science, 1078-1093.
4. Atkinson, R. (1999). project management : cost, time and Quality, two best guesses and a phenomenon, its time to accept other succes criterja. project management, 337-342. [
DOI:10.1016/S0263-7863(98)00069-6]
5. banker, R., charnes, A., & cooper, W.(1984). some models for estimating technical and scale inefficies in data envelopment. management science, 1078-1093. [
DOI:10.1287/mnsc.30.9.1078]
6. Barros de Oliveira, M., Costa, H., Figueiredo, F. V., & Rocha, A. R. C. (2014). Scaling up a Project Portfolio Selection Technique by using Multiobjective Genetic Optimization. iSys-Revista Brasileira de Sistemas de Informação, 7(4), 60-74.
7. Badiezadeh, T., Farzipoor, R., & Samavati, T. (2017) Assessing sustainability of supply chains by double frontier network DEA: A big data approach, In Computers & Operations Research, 0305-0548. [
DOI:10.1016/j.cor.2017.06.003]
8. Bhattacharyya, R., Kumar, P., & Kar, S. (2011). Fuzzy R&D portfolio selection of interdependent projects. Computers & Mathematics with Applications, 62(10), 3857-387. [
DOI:10.1016/j.camwa.2011.09.036]
9. Beach, R., Muhlemann, A., Price, D., Paterson, A., & Sharp, J. (2000). A review of manufacturing flexibility. European journal of operational research, 41-57. [
DOI:10.1016/S0377-2217(99)00062-4]
10. Charnes, A., Cooper, W., & Rhodes, E.(1978). Measuring the efficiency of decision making units. Europen journal of operational research, 429-444. [
DOI:10.1016/0377-2217(78)90138-8]
11. Cooper، R. G.، Edgett، S. J.، & Kleinschmidt، E. J. (1998). Best practices for managing R&D portfolios. Research technology management، 41(4)، 20. [
DOI:10.1080/08956308.1998.11671219]
12. Dyer, J., & Sarin, R.(1979). Measurable multi-attribute value functions. Operations Research, 810-822. [
DOI:10.1287/opre.27.4.810]
13. Englund, R. L., & Graham, R. J. (1999). From experience: linking projects to strategy. Journal of Product Innovation Management, 16(1), 52-64. [
DOI:10.1111/1540-5885.1610052]
14. Farrell, M.(1957).the measurement of productive efficiency. journal of the royal statstical society, 253-290. [
DOI:10.2307/2343100]
15. Hsiao, W., Lin, H., & Chang, T.(2007). Fuzzy consensus measure on verbal opinions. Expert systems With Applications. [
DOI:10.1016/j.eswa.2007.07.040]
16. Jafarzadeh, M., Tareghian, H. R., Rahbarnia, F., & Ghanbari, R. (2015). Optimal selection of project portfolios using reinvestment strategy within a flexible time horizon. European Journal of Operational Research, 243(2), 658-664. [
DOI:10.1016/j.ejor.2014.12.013]
17. Kolahi A,Tahmooreszadeh Sh, Gachkar L, Mardani M (2008). Research priority setting of shaheed Beheshti Medical University Infections Diseaes and Tropical Medicine Research center in 2007. Iran J Clin Infect Dis.
18. Kwon, H.B., Marvel, J.H. and Roh, J.J, (2016) "Three-stage per-formance modeling using DEA-BPNN for better practice benchmarking", Expert Systems With Applica-tions [
DOI:10.1016/j.eswa.2016.11.009]
19. Liu, S. S., & Wang, C. J. (2011). Optimizing project selection and scheduling problems with time-dependent resource constraints. Automation in Construction, 20(8), 1110-1119. [
DOI:10.1016/j.autcon.2011.04.012]
20. Malekafzali H, Bahreini FS, Alaedini F, Forouzan AS (2007). Health system priorities based on needs assessment and stakeholders participation in I.R.
21. Petrović , M., Bojković1, N., Stamenković, M., & Anić, I., (2018). A Sensitivity Analysis of ELECTRE Based Stepwise Benchmarking for Policy: the Case of EU Digital Agenda, Journal of Sustainable Business and Management Solutions in Emerging Economies. [
DOI:10.7595/management.fon.2018.0003]
22. PMBoK, A. (2012). A Guide to the project Management body of knowledge (Fifth Edition). Project Management Institute, Pennsylvania USA.
23. PMI standards, C. (1996). A guide to the project. Project Management.
24. Saati, S& Menarani, A (2005). Reducing weight flexibility in fuzzy DEA. Applied Mathematics and Computation. [
DOI:10.1016/j.amc.2003.12.052]
25. Soleimani damaneh , M. Jahanshahloo,G. Abbasbandy , S (2006). Computational and theoretical pitfalls in some current performance measurement techniques and a new approach. Applied Mathematics and Computation. [
DOI:10.1016/j.amc.2006.01.085]
26. Tavana، M.، Khalili-Damghani، K.، & Sadi-Nezhad، S. (2013). A fuzzy group data envelopment analysis model for high-technology project selection: A case study at NASA. Computers & Industrial Engineering، 66(1)، 10-23. [
DOI:10.1016/j.cie.2013.06.002]
27. Turner, J. R. (2014). The handbook of project-based management (Vol. 92). McGraw-hill.
28. Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio optimization. Journal of Economic Dynamics and Control, 32(1), 235-258. [
DOI:10.1016/j.jedc.2007.01.034]
29. Witzel, M. (2002). A short history of efficiency. business strategy review, 38-47. [
DOI:10.1111/1467-8616.00232]
30. Xue, Q., Wang, Z., Liu, S., & Zhao, D. (2014). An improved portfolio optimization model for oil and gas investment selection. Petroleum Science, 11(1), 181-188. [
DOI:10.1007/s12182-014-0331-8]
31. Zadeh, L. (1965). fuzzy sets. Information and control, 338-353. [
DOI:10.1016/S0019-9958(65)90241-X]